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Granular temperature quantifies velocity fluctuations in fluidized granular materials.
There is ongoing effort to understand granular temperature T in vibro-fluidized grains
through the power law T ∝ Vα

p , where Vp is peak vibrational velocity. However, the
present literature disagrees on the value of α. We utilize dimensional analysis and
discrete element simulations to show that granular temperature, and therefore the
exponent α, depends crucially on a non-dimensional number W representing the
competition between vibrational and gravitational energies but is much less sensitive
to other system parameters. Furthermore, change in the barycentric height ∆hcm

of the vibrated grains, and their temperature T , typically behaves differently with
Vp. Thus, ∆hcm cannot generally be used as a surrogate for T , as is often done at
present. Our computations help explain the currently contradictory results on how
granular temperature scales with peak vibrational velocity. Finally, we also briefly
investigate the dependence of the temperature on system parameters, as well as its
spatial variation. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4944795]

I. INTRODUCTION

Velocity fluctuations play a crucial role in understanding fluidized granular materials, such as
rapidly flowing foodgrains or sand. These fluctuations are often quantified in terms of a granular
temperature (T) that measures the fluctuational kinetic energy of the grains.1,2 Granular tempera-
ture is, thus, analogous to temperature in the kinetic theory of gases3 and forms the basis of all
kinetic-theory based descriptions of flowing grains.4,5

Granular temperature in fluidized grains has been typically investigated in the context of verti-
cally vibrated dissipative grains. The dependence of T on peak vibrational velocity Vp is often
expressed through the power law

T = CVα
p , (1)

where C is a constant, α is a scaling exponent, and T =


T (r) dV(r)/V is the volume-averaged
granular temperature. Unfortunately, as the survey below shows, there is no consensus on the
value of α. In this work, we demonstrate that including the acceleration due to gravity (g) helps
clarify past contradictory results. Gravity enters the physics through the dimensionless number
W = V 2

p/dg, where d is the grain diameter. The parameter W is the square of the ratio of the time
scale induced by gravity (d/g) to that due to the base motion (d/Vp); W , thus, quantifies the
competition between the kinetic energy input through base vibrations (∼mA2ω2) and the gravita-
tional potential energy (∼mdg). It is easy to show that α = 2 in the absence of gravity, notwith-
standing system parameters, such as the number and shape of grains, their friction and restitution
coefficients, vibration amplitude, and the presence or absence of sidewalls. However, when g is
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non-zero, α depends crucially on the range of W over which (1) is fit. Furthermore, while α may
now be influenced by other parameters of the system, their effect is not found to be as strong as that
of W .

Several previous investigations did not directly measure the temperature. Instead, they followed
the change in the barycentric height ∆hcm of the vibrated grains and fitted the power law

∆hcm = ChVαh
p , (2)

where Ch is a constant and αh is a scaling exponent. It was then assumed that T ∝ ∆hcm, so that
α = αh. We will show that, in fact, T is not proportional to ∆hcm, except for large values of W .

Our findings have the following implications: (a) For large W , i.e., when external vibration
dominates gravity, α ≈ 2 for all systems, (b) to study granular temperature T in intermediate re-
gimes, we must match the range of W over which previous investigations are conducted, (c) in
intermediate regimes, the change in the barycentric height ∆hcm cannot be utilised as a surrogate for
T , and, finally, (d) if we wish to describe the behavior of T with Vp through power law (1), then a
universal range of W needs to be identified, and we make one suggestion to this end in Sec. V.

Previous work shows no agreement on the scaling of granular temperature with peak vibra-
tional velocity. The reasons underlying the disagreement are also not known. The analysis of Warr
et al.6 predicts that, in two dimensions, granular temperature scales with the square of Vp, i.e., α = 2
in (1). This was confirmed by Kumaran7 in both two and three dimensions. Huntley8 proposed that
α = 4/3 in two dimensions, after heuristically extending the analysis of Warr et al. to dense sys-
tems. Meanwhile, the two-dimensional molecular dynamics simulations of Luding et al.9 estimated
that α = 1.5. Two-dimensional experiments of Warr et al.6 and Feitosa and Menon10 found α = 1.41
and 2, respectively. Yang and Candela11 and Wildman et al.12 conducted three-dimensional exper-
iments and estimated α to be, respectively, 1 and 1.54. In binary mixtures, Wildman and Hunt-
ley13 found that the temperatures of the small and big grains scaled as, respectively, α = 1.37 and
α = 1.41, while Windows-Yule and Parker14 found that the temperature of bi-disperse grains of the
same size, but different materials, scaled with α = 1. In all investigations, grains were vibrated from
the bottom and did not interact with an upper boundary, if at all present. Some studies9,11,14 did not
measure T directly but inferred its scaling from that of ∆hcm, assuming that T ∝ ∆hcm.

Finally, we distinguish the current work and its aim with previous computations15,16 and anal-
yses based on kinetic theory17,18 or granular hydrodynamics.19,20 The goal in these works was to
study the spatial variations of fields such as temperature and volume fraction. No attempt was made
to clarify why experiments did not agree on the scaling of the average temperature. In this paper, we
address the latter issue.

II. DIMENSIONAL ANALYSIS

Here we investigate vertically vibrated, dissipative grains of mass m as shown in Fig. 1.
Collisional dissipation is characterized by coefficients of restitution ep and ew for grain-grain and
grain-wall interactions, respectively. The granular temperature T may be expressed through the
functional dependence

T = f (g,Vp, A,d,m,N,ep,ew, µp), (3)

where A is the vibration amplitude and N is the number of layers in the granular assembly when it
is static, e.g., N = 4 in Fig. 1. We ignore dependence on the Young’s modulus, as elastic vibrations
in a grain will play an insignificant role in the scaling of granular temperature. This is confirmed in
Sec. V. The previous equation may be non-dimensionalized as

T B
T

mV 2
p

= f *
,

V 2
p

dg
,

A
d
,N,ep,ew, µp

+
-
. (4)

The dimensionless number W = V 2
p/dg, which depends on gravity, arises naturally. The dependence

of T on this number was, surprisingly, ignored in all previous investigations, even though, for verti-
cally vibrated open systems, the restoring force on the grains is due only to gravity. Furthermore, in



043301-3 Bhateja, Sharma, and Singh Phys. Fluids 28, 043301 (2016)

FIG. 1. Three- and two-dimensional assemblies of grains at rest on a rigid plane before being vibrated vertically along z.

all such systems, there is a natural competition between external vibrations, which fluidizes grains,
and gravity, which causes grains to settle down. Comparing (4) and (1), it is clear that, when gravity
is present, both C and α will depend on the range of W probed and on the parameters A/d,N,ep,ew,
and µp. However, when g is absent, so is W , and, consequently, α = 2, irrespective of the values of
other parameters.

In subsequent development, we will investigate granular temperature through (4) by varying the
dimensionless number W . Other parameters in (4) will be kept constant or changed systematically,
as required. We will understand the effect of W on the granular temperature as capturing the impor-
tance of gravity’s influence (gravitational potential energy) with respect to base vibrations. Indeed,
the dimensionless number W only arises if gravity is present.

We note that non-dimensional numbers that include gravity have been employed previously,
e.g., Aω2/g, where ω is the vibration frequency. However, their use was limited to providing a
convenient representation of data. No effort was made to explain disagreement in the scalings of
granular temperature on the basis of such numbers.

III. COMPUTATIONAL SETUP

With the elementary dimensional analysis in place, we turn to discrete element (DE) simula-
tions, see Cundall and Strack.21 Both two- and three-dimensional systems are studied, as shown in
Fig. 1. Grains are spherical in shape, and their collisional interactions are modeled by means of a
normal linear spring-dashpot model coupled with a tangential dashpot. Rough grains are described
by including dry friction through a tangential Coulomb slider of friction coefficient µp. Appendix
provides further details about our DE simulations.

A typical simulation begins with a collection of mono-disperse grains resting on a rigid base
in the x-y plane. The base is vibrated vertically along z at A sinωt. Finally, granular temperature is
defined1 as

T =
m

2d f

�

u2� +



v2� +



w2�� C

�
Tx + Ty + Tz

�

d f
, (5)

where u, v , and w are, respectively, the x, y , and z components of fluctuational velocity, d f is the
translational degrees of freedom of a grain, and ⟨·⟩ denotes an ensemble average. All quantities
are averaged over long times under steady-state conditions. Temperature may be anisotropic in the
current granular system, so that we also define its x, y , and z components as above. Subsequently,
we focus on the temperature component Tz, as appropriate for vertically vibrated grains. Thus, Tz

replaces T in (1) and (4).
Experimental studies are necessarily conducted on confined grains. However, in simulations,

we can prevent grains from getting influenced by sidewalls by considering a canonical system,
obtained by imposing periodic boundary conditions in the horizontal x and y directions in three
dimensions and along the x axis in two dimensions. The periodic cell is of size 5d × 5d × Nd in
three dimensions and 10d × Nd in two dimensions; we have verified that further increase in the
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horizontal dimensions of the cell does not influence results. The frequency ω is varied from 300 rpm
to 4000 rpm in increments of 100 rpm. For reasons detailed in Sec. IV, the vibration amplitude A
is kept constant at one grain diameter. The spring-dashpot model, which describes grain collisions,
is chosen to obtain coefficients of restitution ep = ew = 0.9, to match earlier experimental studies.
Two cases are distinguished: (a) a smooth system in which the grains and the base have friction coef-
ficient µp = 0 and (b) a rough system, wherein the grains and the base have µp = 0.4, corresponding
to glass.

IV. RESULTS: EFFECT OF W

Figure 2 plots the variation of T z = Tz/mV 2
p with the dimensionless number W = V 2

p/dg for
smooth and rough grains in both two and three dimensions. Here, W was varied by changing the
frequency ω and fixing the amplitude ratio A/d = 1. This is done to isolate the effect of gravity
that influences T in (4) through W . A change in the amplitude ratio will affect T in (4) directly
and through W , as W = V 2

p/dg = A2ω2/dg. This makes it impossible to distinguish between the
contributions of W and A/d to variations in T . Finally, note that altering ω or g in simulations is
equivalent, as both only occur together in W , and not anywhere else in (4).

In all cases in Fig. 2, we observe that T z initially increases with W , reaches a peak, and then de-
creases asymptotically to a constant value. We understand the behavior of T z as follows. The temper-
ature is a measure of the average fluctuational velocity of the grains that, in turn, depends on the
collisional dynamics of the grains. In the absence of gravity, the collisional time scale is set by the
rate Vp = Aω at which the rigid base is vibrated. There is no other time scale. This leads to Tz ∝ V 2

p ,
i.e., T z being a constant; the zero gravity case is further explored later in this section. Gravity will
affect collisional dynamics only if the time scale d/Vp imposed by the vibrations is comparable to
the time scale


d/g over which gravity acts, i.e., when (d/g)/(d/Vp) = W 1/2 = O(1). This explains

why T z varies with W at low to moderate vibrations but asymptotes to a constant value at high W .
We note that taking the limit W → ∞ is equivalent to setting gravity to zero, where α = 2.

The above arguments hold also for rough grains, as dissipation due to Coulomb friction is
rate-independent. The key difference is that rough grains dissipate more energy and, so, move
slower than smooth grains vibrated at the same rate. Therefore, at a given Vp, gravity influences
collisional dynamics more in rough grains. Thus, T z of rough grains in Fig. 2 decays to a constant
at a rate slower than for smooth grains. The effect of system parameters ep, µp, and N is discussed
further in Sec. V.

FIG. 2. Variation of T z with W in the canonical systems defined in the text. We simulate 100 grains in three dimensions and
40 in two dimensions; this corresponds to an initial depth of four layers, i.e., N = 4. Also shown are ranges of W over which
previous studies (identified by reference numbers) were conducted. Dashed ranges pertain to investigations that measured
∆hcm and not Tz.
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FIG. 3. Snapshots of a smooth two-dimensional system when vibrated at three frequencies that correspond to (a) W <Wf ,
(b) W .Wf , and (c) W =Wf , as shown in the insets.

The peak in the curves in Fig. 2 is related to the degree of fluidization of the granular assembly.
We find that at W before the peak, Vp is low, and only the upper layers of the granular assembly are
mobilized. As the vibration rate increases, so does W , and more layers get disturbed. At W beyond
W f — at which the peak in T z occurs — all layers are observed to be agitated. We, thus, define
the system to be fluidized when vibrated at W > W f . The above argument is verified in Fig. 3 that
shows snapshots of a vibrating two-dimensional system at three different W near W f . In passing, we
draw attention to the sudden increase in the granular temperature from zero at W = 0.89; see inset in
Fig. 3. This is indicative of a solid to fluid transition that has also been seen22 in horizontally shaken
granular materials.

Figure 4 shows that the response of the non-dimensional horizontal and total temperatures,
respectively, T x and T is similar to that of T z. As expected, in a vertically vibrated system, Tx

is lower than Tz. The total temperature is also lower, as it is the average of temperature in all
directions.

The behavior of T z in Fig. 2 appears generic for all vibrated systems where gravity plays a
role, howsoever subtle. For example, Fig. 5 plots T z in a horizontally vibrated channel. As shown
in the inset, the grains are contained in an infinitely long smooth channel of width 43d and height
10d, with base normal to gravity. We see that, when gravity is present, T z first rises and then
asymptotically decays to a constant, as in Fig. 2. Gravity plays a role because the grains can, and
do, move normal to the channel’s base, thereby regulating the dilatation of the grains. Thus, perhaps
contrary to expectations, gravitational potential energy is important even in horizontally vibrated
systems. In the absence of gravity, T z is indeed a constant, as argued previously. We note that the
second smaller peak in Fig. 5 is due to the grains striking the top of the channel at high W , which
increases the agitation and thus the granular temperature.

Figure 6 plots the scaling exponent obtained in a three-dimensional, vertically vibrated system,
after setting gravity to zero, but including an upper boundary to keep the grains from flying away.
In this case, the non-dimensional number W is absent, and we change T z by varying the amplitude
ratio A/d and the initial number density n. In each case, the scaling exponent α is seen to be 2,
as it must be on dimensional grounds discussed in Sec. II. The results of Fig. 6 are unaffected by
the choice of N,ep, and µp. These results, therefore, reinforce the suggestion that the presence of
gravity, as captured by W , is the fundamental reason that α varies. This is confirmed in Sec. V,
where we show that α depends only weakly on system parameters when g , 0.

Figure 2 also identifies the range of W over which previous studies were conducted. From the
figure, it is clear that, in vertically vibrated grains, the exponent α in (1) will depend on the range
of W over which power law (1) is fit. In fact, the behavior of T z in Fig. 2 suggests that, except at
high W , seeking a power-law description of kind (1) may be an oversimplification, and we explore
this issue at the end of this section. For the moment, we continue to work with the hypothesis that
a power-law scaling may be obtained. This is done to make contact with past and ongoing research
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FIG. 4. Variation of non-dimensional temperatures T x and T with W in the canonical systems defined in the text.

that assume such power laws and, further, to emphasize how properly accounting for gravitational
potential energy, through the non-dimensional number W , helps reconcile previous disparate results.

A quadratic scaling, i.e., Tz ∝ V 2
p , will only hold when attention is restricted to high enough W ,

as in kinetic theory based analyses,6,7 which tacitly assume that external force fields, like gravity,

FIG. 5. Variation of T z with W in horizontally vibrated smooth grains, with and without gravity. Periodic boundary
conditions are imposed along the y-axis, and the channel is vibrated along the x-axis. We simulate 3000 grains, with N = 2,
40 rpm 6ω 6 900 rpm, A= 10d, and ep = ew = 0.3.
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FIG. 6. The scaling exponent α obtained when grains are vibrated vertically with g = 0. The rigid upper boundary is 10d
away from the base. Several amplitudes A (open circle) and initial number densities n (filled circle) are investigated.

do not affect collisional dynamics. Huntley8 claimed that α depends crucially on the number den-
sity n via the mean free path l. Assuming that the average coordination number s is six in dense
two-dimensional systems, Huntley found that l ∼ 1/

√
n. This is in contrast to the estimate of 1/n

for gases at equilibrium. As suggested by Fig. 6, and shown by experiments discussed at the end of
Sec. V, W , and not n, is fundamentally responsible for variations in α. Furthermore, we find that
largest value of the average volume fraction, seen at the peak in Fig. 2 when W = W f , is about 0.2.
This is much smaller than ∼0.7, which is the volume fraction when s ≈ 6. This is expected as s is
six only in crystallized systems.23 Thus, Huntley’s explanation may not be entirely satisfactory.

Next, for each previous experimental study, we employ (1) along with the curves in Fig. 2, over
the associated range of W , to compute the exponent α. We emphasize that the limited ranges of W
over which T z is fit are dictated by experiments and are not our choices. The simulations of Luding
et al.9 are atypical and are considered separately. For comparison with experiments, we consider the
two- or three-dimensional rough systems, as appropriate. The results are tabulated in Table I. We
see that our computed scalings are close to what have been observed by experiments that measure
temperature directly. The small deviations from these experiments are primarily because of two
reasons. First, experiments, as opposed to our canonical system, are conducted in boxes where the
presence of sidewalls affects α. This effect is complex, as it depends on the frictional and damping
characteristic of the walls and their separation. Second, we model normal collisions through a linear
spring-dashpot model, which leads to the restitution coefficient ep being independent of collisional
velocity.24 Experiments25,26 show that ep reduces as the collisional velocity increases. In fact, in
adhesive grains, ep may reduce even for low-speed collisions.27,28 The overall effect is to increase
dissipation, especially at higher agitation levels. This, as for rough systems in Fig. 2, will slow the
rate at which T z decays to a constant, thereby reducing α. McNamara and Falcon29 confirm that α
indeed lowers when ep is velocity-dependent, cf. Sec. V.

TABLE I. Comparison of the scaling exponent α reported in previous
studies with those found from Fig. 2, in the manner discussed in the text.
References in bold measured temperature scaling directly, while the others
inferred it from ∆hcm.

Reference α (reference) α

Warr et al.6 1.41 ± 0.03 1.49
Wildman et al.12 1.54 ± 0.37 1.43
Feitosa and Menon10 2 1.92
Yang and Candela11 1 ± 0.2 1.12
Windows-Yule and Parker14 0.92 ± 0.1 1.29
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FIG. 7. Variation of the ratio T z/∆hcm with W in two- and three-dimensional rough canonical systems. The simulation
parameters are same as in Fig. 2. Also shown are ranges of W over which studies listed in Table II were conducted.

Our results differ from those reported by references in the bottom two rows of Table I, because
those studies inferred the scaling of temperature from that of the change in the barycentric height
∆hcm. Even earlier, experiments6,12 have observed different scalings α and αh for, respectively, Tz and
∆hcm. Figure 7 shows that the ratio T z/∆hcm, where ∆hcm = ∆hcm/

(
V 2
p/g
)
, is a constant only at high

W . However, over intermediate ranges of W , where most experiments are conducted, the behaviors of
T z and ∆hcm are not the same, so that α and αh differ. This is confirmed in Table II, which compares
experimental observations of αh with exponents that we obtain, after fitting (2) with our simulation
data over the W -range that the experiments probed. We now find a good match with experiments.
Thus, α and αh are typically different, and we should not expect temperature to behave in the manner
in which the height of the center-of-mass shifts. Indeed, the barycentric height was employed as a
proxy for the temperature only after assuming that the number density n is given by the Boltzmann
distribution, n ∝ e−mg z/kBT , where kB is the Boltzmann constant. This assumes an isothermal gran-
ular system. However, we have seen above that the temperature does not scale quadratically, so that
the granular system being investigated is not isothermal; the results of Sec. VI support this conclusion
further. Thus, there is little reason to expect that the temperature and the barycentric heights will
scale in the same manner. This has important implications on how barycentric shifts in vibro-fluidized
grains should be interpreted.

We turn, finally, to the simulations of Luding et al.9 They followed ∆hcm for 0 6 W 6 750 and
computed αh = 1.5 ± 0.01. But, as Table II shows, no experiments have observed this scaling, even
though all experiments were conducted over ranges covered by simulations.9 This may be because
of specific details of their computation that are inaccessible to us.

We end this section by attempting to fit the curves of Fig. 2 through both an algebraic and
an exponential dependence of T z on W , respectively, T z = a

�
1 + cW−b� and T z = a

�
1 + ce−bW

�
,

where a,b, and c are fitting constants. The results are shown in Fig. 8 on both linear and log scales,
and the fitting constants and the correlation coefficients are summarized in Table III. We fit the

TABLE II. Comparison of the scaling exponent αh reported in previous
studies with those found from our simulations.

Reference αh (reference) αh

Warr et al.6 1.3 ± 0.04 1.41
Wildman et al.12 1.24 ± 0.15 1.19
Yang and Candela11 1 ± 0.2 0.88
Windows-Yule and Parker14 0.92 ± 0.1 1.06
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FIG. 8. Algebraic and exponential fits of T z and W in rough two- and three-dimensional systems.

temperature behavior only after fluidization, i.e., after the peak in the curves of Fig. 2. Even though
the correlation coefficients for all fits are comparable, it is clear from Fig. 8(b) that an algebraic
dependence is better in both two- and three-dimensional systems, while the exponential fit reveals
systematic errors,

Tz = c1V 2
p + c2Vα

p . (6)

This, in turn, suggests that the (volume-averaged) temperature Tz is best related to the peak vibra-
tional velocity as a sum of two power laws: with constants c1 and c2, and 0 < α < 2; the first term
captures behavior at high Vp, while the other governs the temperature response at low to moderate
vibration rates.

TABLE III. Fitting parameters employed in Fig. 8.

System Fit a b c Correlation coefficients

2D rough Algebraic 0.282 0.656 2.07 0.9957
2D rough Exponential 0.327 0.131 1.022 0.9941
3D rough Algebraic 0.054 0.622 7.98 0.9964
3D rough Exponential 0.092 0.124 2.695 0.9943
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V. RESULTS: EFFECT OF SYSTEM PARAMETERS

In this section, we investigate the dependence of the granular temperature and the scaling
exponent α on various system parameters, which includes the grain stiffness as characterized by the
normal spring stiffness kn (see the Appendix), ep, µp,N , and the amplitude ratio A/d.

FIG. 9. Variation of the non-dimensional temperature T z with W at different (a) kn, (b) ep, (c) µp, and (d) N .
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FIG. 10. Dependence of α on ep, µp, and N .

To study the effect of kn,ep, µp, and N , we repeat the simulations of Sec. IV, while varying any
one of these parameters. Throughout, the amplitude ratio A/d is kept fixed at 1, for reasons already
mentioned in Sec. IV. The results are shown in Fig. 9. Figure 9(a) confirms our claim in Sec. II that
grain stiffness does not affect the granular temperature. At the same time, Figs. 9(b)–9(d) show that,
for each choice of ep, µp, and N , the non-dimensional temperature T z behaves as in Fig. 2, except
that the curves are stretched or squeezed, depending on whether the overall dissipation increases or
decreases. This holds even for deep (N > 6) beds in Fig. 9(d). We also observe that, amongst ep, µp,
and N , the granular temperature is most impacted by changes in the number of initial layers N and
least by the friction coefficient µp.

Next, for each simulation of the kind shown in Figs. 9(b)–9(d), we compute α by fitting (1) over
a range of W that extends from W f , where the system fluidizes completely, to W2, beyond which T z

is nearly constant. The range [W f ,W2] is one candidate for a universal range over which to explore
the power-law dependence of Tz in vibro-fluidized systems.

FIG. 11. Dashed lines show variation of the scaled temperature Tz/mgd with amplitude ratio A/d at three values of W .
Each dashed line originates from a point with specified W , either 4.52, 5.58, or 8.04. Along a dashed line, A/d decreases
from 1 to 0.1, as indicated in parenthesis, while W is kept constant by changing ω proportionately. Along the solid line, W
is increased from 4.52 to 8.04 by incrementing ω, but keeping A/d = 1. We consider a rough two-dimensional canonical
system. The abscissa relates to the solid line.
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Figure 10 shows the effect of changing ep, µp, and N on α. When grains are more elastic,
i.e., ep is more, the grains move faster at a given Vp, and changes in gravitational potential energy
are less significant. Thus, T z in Fig. 9(b) becomes constant more rapidly, i.e., W2 is lowered; the
more rapid decay of T z at higher ep is clear from Fig. 9(b). This leads to α increasing with ep,
albeit gently. On the other hand, when N is large, there is a bigger mass of grains and a correspond-
ing greater importance of gravitational potential energy. Indeed, Fig. 9(d) shows that T z becomes
constant at a slower rate at higher N . Thus, W2 is elevated, and, so, α decreases. It is interesting
to note that α becomes nearly constant at about 1 for deep beds, i.e., for beds with N > 6. Finally,
we observe that changing µp affects α only marginally, but in a manner similar to ep, for the same
reasons. Our results for ep and N are consistent with previous findings.29

Past experiments varied the initial number of layers N . We now show that the effect of gravity
on the scaling exponent α, as captured by W , is much more pronounced than that of N , for the
values of N considered. Yang and Candela11 and Windows-Yule and Parker14 did experiments with
deep beds, respectively, N 6 7 and 3 6 N 6 10. Noting from Fig. 10 the minimal effect of N when

FIG. 12. Variation in local temperature T̂z with z for several N at (a) W = 5.58, (b) W = 22.35, and (c) W = 50.3 in a
three-dimensional, smooth canonical system with ep = 0.9.
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N > 6, we repeat our simulations with N = 6 over the W range that these researchers probed. We
find marginal changes in the scaling exponent αh from what is reported for N = 4 in Table II. In
the case of Yang and Candela, αh changes to 0.75, while for Windows-Yule and Parker, we find
αh = 0.92. The former is within experimental error, while the latter matches experiments.

Another demonstration of the greater importance of W compared to N is as follows. Experi-
ments of Warr et al.6 were done at W between 0.5 and 9 for N = 1,2, and 3. For N = 3, α was 1.41,
and no appreciable difference was seen at other N . Thus, even though N varied, α remained the
same because of the fixed range of W . At the same time, Feitosa and Menon10 covered W between
44 and 135, took N = 4, and observed α = 2. Both Warr et al. and Feitosa and Menon conducted
experiments with grains of similar properties. Figure 10 shows that changing N from 3 to 4 barely
affects α. Therefore, the discrepancy in the observed scalings must be because the two experiments
were conducted over distinct ranges of W . This, recall, corresponds to different relative importance
of the gravitational potential energy in comparison to the vibrational kinetic energy supplied by the
base.

We have so far shown that, in (4), the effect of W on T is far more significant than that of
N,ep, and µp when the amplitude ratio A/d is set equal to 1. This implies that, if A/d is held
constant — as in all simulations so far — gravitational potential energy, through W , regulates T
and so also the scaling exponent α. However, most experiments control the amplitude ratio rather
than the frequency. When the amplitude is varied, it also changes W = V 2

p/dg, as Vp = Aω. This
makes it impossible to distinguish the impact of W on granular temperature from that of A/d, cf.
(4). We note that alteration in W due to variation in A/d indicates how kinetic energy input by the
base (∼mA2ω2) compares with gravitational potential energy (∼mdg). Thus, the part of the response

FIG. 13. Continued from Fig. 12. Variation in T̂z with z for a shallow and a deep bed at (a) W = 68.46 and (b) W = 85.01.
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of T that is driven by changes in W — introduced by variations in A/d — reflects the influence
of gravity on T . We now wish to show that the observed scalings in experiments, which controlled
A/d, were primarily due to corresponding changes in W modulating T . To this end, we demonstrate
that granular temperature is not affected much when we vary A/d, but keep W fixed.

Figure 11 compares how the granular temperature Tz — now scaled by mgd — changes when
we vary the amplitude ratio A/d but keep W fixed at three different values (dashed lines), to the
case when we change W keeping A/d = 1 (solid line). We investigate a range of W corresponding
to the experiments of Warr et al.6 The solid line in Fig. 11 shows that when we span this W -range
retaining A/d = 1, the temperature increases by nearly 50%. On the other hand, when we decrease
A/d from 1 to 0.1 along any dashed line in Fig. 11, while W is kept fixed at the value from which
the dashed line begins, we find that the temperature reduces by only 15% on average. Moreover,
when we restrict ourselves to the range of amplitude ratios probed by Warr et al., i.e., A/d between
0.1 and 0.5, the average change in temperature is a mere 3%. These simulations confirm that the
effect of W on granular temperature, and hence its scaling, is far more significant than that of the
amplitude ratio A/d.

VI. RESULTS: SPATIAL VARIATION

As mentioned in the Introduction, a vertically vibrated system is not homogeneous. In this final
section, we briefly investigate how temperature varies spatially in our canonical systems. In these
systems, sidewalls are absent, and spatial variation indicates change with vertical height z. To this
end, we compute the local temperature T̂z(z) at a vertical station z by averaging the temperature Tz

FIG. 14. Variation of T̂z in three-dimensional smooth and rough systems with ep = 0.9. We use 100 grains and N = 4.
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in a horizontally aligned box of depth one particle diameter that is centered at z. Finally, we will
primarily focus on three-dimensional systems, as two-dimensional systems display qualitatively
similar response.

We had earlier, in Fig. 9(d), contrasted the behavior of the (volume averaged) temperature Tz

with the parameter W for various initial numbers of layers N . We had observed that the temperature
curves were similar for both shallow and deep beds. Typically, a bed is “shallow” if the initial num-
ber of layers N < 6 and “deep” if N > 6, see, e.g., Wassgren et al.30 This similarity is reinforced
when we consider the spatial variation of temperature for several N at different values of W ; these
results are shown in Figs. 12 and 13.

In Fig. 12(a), the temperature T̂z(z) is seen to initially decrease with height from the base, as
expected. However, interestingly, all beds display a low secondary peak in their temperature profiles
immediately before the temperature rapidly vanishes. As W increases to 22.35 in Fig. 12(b), this
secondary peak subsides. Additionally, the hottest region shifts from being next to the vibrating
base, to 7-10 grain diameters above. This feature is initially observed for shallow beds, but, at higher
W also for deep beds, see Fig. 12(c). At W = 50.3 in Fig. 12(c), we find that the low secondary peak
returns in the shallow bed (N = 4). Again, as W increases, deep beds too demonstrate this feature,
see Fig. 13. We also see that the secondary temperature peak increasingly becomes more prominent
at high W . In fact, at W = 85.01 in Fig. 13(b), the secondary temperature peak is comparable to the
primary one next to the base for the shallow bed with N = 4.

Simulations with deep beds are computationally very expensive. However, noting the qualita-
tive similarities between the responses of both the average and the spatial temperatures in shallow
and deep beds, further investigations will be primarily for beds with N = 4. The understanding
is that the behavior observed for N = 4 will also be shown by deeper beds, albeit at higher W .

FIG. 15. Variation of φ̂. See also caption of Fig. 14.
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We have confirmed the validity of this hypothesis by comparing with results from simulations for
three-dimensional, smooth, deep beds. This is not shown for brevity.

We now compare the vertical variation of the local temperature T̂z(z) and the packing fraction φ̂(z)
at several values of the parameter W for three-dimensional systems; these are shown in Figs. 14 and
15, respectively. As anticipated, T̂z(z) in Fig. 14 increases with W . We see that in most cases, perhaps
counterintuitively, the “hottest” region is not next to the vibrating base but at a distance slightly away,
cf. Figs. 12 and 13. This feature is lost at low W and with higher friction, perhaps due to reduced
mobility of the grains. We also note that at all W , the temperature decays to zero with height, with
non-zero T̂z persisting for greater z at higher W as, then, grains reach higher elevations, cf. Fig. 15.
Finally, we observe the presence of a secondary peak in Fig. 14(a), which becomes increasingly more
prominent at higher W but vanishes when friction increases in Fig. 14(b), perhaps, due to reduction in
granular mobility. These results are in agreement with the computations of Lan and Rosato.15 How-
ever, we only have partial match with the hydrodynamic analysis of Brey et al.20 which, in contrast
to Fig. 14(a), predicted a monotonic decay in the temperature after an initial maximum.

Similarly, but more prominently, the packing fraction too peaks a few grain diameters away
from the vibrating base, before falling away to zero as we move away from the base, see Fig. 15.
This maximum does not occur at the same location as the primary peak in T̂z in Fig. 14. No
secondary peak is seen. The packing fraction profile may be understood heuristically on the basis
of opposing effects of the vibrating base and downward gravity: while collisions with the base drive
grains upwards, gravity causes them to fall down, and these two “streams” of grains coalesce some
distance away from the base. Figure 15 also shows that the packing fraction in rough systems peaks
earlier, and their maximum packing fraction is also higher. The earlier peaking again reflects the
fact that when dissipation is present, grains energized by collisions with the base slow down faster,
leading to clustering closer to the wall.

At the same time, dissipative grains will cluster more, resulting in higher packing fractions. For
a given system, a similar argument explains the earlier peaking of the volume fraction at lower W —
when W is low, gravity’s effect is greater, and the grains energized by the base meet the ones falling
under gravity closer to the base.

Finally, in Fig. 16, we plot the scaled local temperature T̂z/mV 2
p at various vertical stations

as functions of W in two- and three-dimensional, smooth and rough systems. In two-dimensional

FIG. 16. Variation in scaled local temperature T̂z with W at different vertical locations z in two- and three-dimensional,
smooth and rough systems with ep = 0.9 and 100 grains, so that N = 4. The legend for different z-curves is provided in (a).
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systems, we find that T̂z becomes a constant at higher values of W , see Figs. 16(a) and 16(b). Thus,
T̂z also scales as V 2

p at higher W , and this is consistent with the response of the scaled volume-
averaged temperature T z in Fig. 2. In three dimensions, Figs. 16(c) and 16(d) show that the decay
of T̂z/mV 2

p to a constant value is slower. In each case, surprisingly, the scaled volume-averaged
temperature T z asymptotes to a constant faster in Fig. 2 than do the local temperatures T̂z/mV 2

p

in Fig. 16. This may be understood from Fig. 16 where, at low z, the temperature is greater than
average and decreases with increasing W . At the same time, high-z regions are colder than average
but become hotter as W grows. The local temperatures at low and high z tend to balance out, and the
volume average becomes a constant before T̂z/mV 2

P.

VII. CONCLUSION

In this work, we have demonstrated that granular temperature T of vibro-fluidized grains depends
crucially on gravity g through the non-dimensional number W = V 2

p/dg, where Vp is the peak vibra-
tional velocity and d is the grain diameter. Previous disparate results for the scaling α in power law (1),
relating T and Vp, are clarified and explained once we correctly incorporate the role of gravitational
potential energy. In particular, we showed that α = 2 for all systems in the absence of gravity or when
W is high enough. In intermediate regimes, α depends significantly on the range of W employed to
fit (1). In these regimes, the change in the barycentric height cannot be employed as a substitute to T .

Our computations suggest that, except at high values of W , modeling temperature T through
a power law of form (1) will not be straightforward. In fact, we saw that a sum of two algebraic
power laws is better able to capture the response of T with W , cf. (6). However, whenever a power
law of kind (1) is sought, given that T depends on W , it is necessary that granular temperature be
investigated over a universal range of W . One example of such a universal range is W f 6 W 6 W2,
where grains are fully fluidized for W > W f , and gravity may be safely ignored for W > W2. We
also observed that the effect of other system parameters such as ep, µp,N , and A/d did not affect the
granular temperature as significantly as W . Thus, the scaling α was regulated most by W , which, in
turn, estimates the relative importance of gravitational potential energy vis-a-vis vibrational kinetic
energy supplied by the base.

Finally, we investigated the spatial variation of the local temperature T̂z and the volume frac-
tion φ̂. We saw that both temperature and density peak away from the base at high W . Further, a
quadratic scaling of T̂z is only observed at high W , just as for the volume-averaged temperature Tz.
Surprisingly, Tz achieves a quadratic scaling with Vp earlier than does T̂z. These aspects do not yet
have a firm theoretical underpinning. A comprehensive understanding of how temperature varies
spatially requires a closer and more detailed analysis.
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APPENDIX: DISCRETE ELEMENT SIMULATIONS

Newton’s second law for the ith grain in a granular assembly may be expressed as

mi ai =

j

f i j + mi b, (A1)

where mi and ai are, respectively, the mass and acceleration of grain i, while f i j is the force exerted
on the ith grain due to its contact with grain j, and b is the body force per unit mass. Note that f i j is
zero when the ith grain has no contacting neighbours. For spherical grains, the angular momentum
balance about the center of mass of grain i is given by
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FIG. 17. A two-dimensional schematic representation of contact between two spherical grains with centers Ci and C j. The
normal direction indicated by the unit vector n̂i j, while the unit vector t̂ indicates the tangential direction.

Ii · αi =

j

τi j, (A2)

where Ii is the mass moment of inertia tensor of grain i about its center of mass, αi is its angular
acceleration, and τi is the total moment exerted on grain i due to its contacting neighbours, which
are indexed by j. It is assumed that body force fields do not exert moments.

The interaction between two grains i and j occurs when they touch and subsequently deform,
i.e., distance between their centers becomes less than sum of their radii, as shown in Fig. 17. The
unit vector n̂i j along the line joining the center of grain i to the center of grain j is defined by

n̂i j =
ri j
|ri j | ,

where ri j = r j − ri, with ri and r j being the coordinates of the centers of grains i and j with respect
to a fixed origin, respectively, so that |ri j | is the distance between their centers. The relative velocity
vi j of grain i with respect to grain j at the point of contact P is given by

vi j = vi − v j + (ωiRi + ω jRj) × n̂i j, (A3)

where “×” denotes the vector cross product, and vi, ωi, and Ri are the center-of-mass velocity of the
ith grain, its angular velocity, and radius, respectively.

The contact force f i j exerted on grain i due to grain j may be decomposed into two components
f ni j and f ti j that are, hereafter, referred to as the normal and tangential forces of contact, respectively.
That is, we write

f i j = f ni j + f ti j . (A4)

We compute normal and tangential forces by employing the linear-spring and dashpot model,
where the spring and dashpot are connected in parallel;31,32 the micro-mechanical model is shown in
Fig. 18. The evaluation of spring and damping forces requires estimates of deformation and its rate
between colliding grains.

The normal force f ni j on grain i due to its collision with grain j is

f ni j = −(cn vni j + kn δn n̂i j), (A5)

where cn and kn are the damping constant and the spring stiffness along the normal direction,
respectively, while vni j is component of the relative velocity vi j along n̂i j,

vni j = (vi j · n̂i j) n̂i j,
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FIG. 18. The general micro-mechanical model for normal and tangential contact forces between two spheres i and j . The
various parameters in the figure are defined in the text.

and the overlap δn between two contacting grains in the normal direction is estimated by subtracting
the distance between their centers from sum of their radii,

δn = Ri + Rj − |ri j |, (A6)

in terms of the radii Ri and Rj of grains i and j, respectively.
The tangential component of the total force is given by

f ti j = −ct vti j, (A7)

where ct, kt, and vti j = vi j − vni j are, respectively, the damping constant, the spring stiffness, and the
relative velocity along the tangent,

t̂ =
vti j
|vti j |

.

As mentioned earlier, we do not include a tangential spring in current simulations, i.e., kt = 0. The
Coulomb friction criterion is employed to incorporate friction between two colliding grains, and
slipping occurs when the tangential force exceeds µ |f ni j |, so that

f ti j = −min(ctvti j, µp |f ni j | t̂), (A8)

where µp is the coefficient of dry friction between surfaces of the colliding grains.
In the linear-spring dashpot model, an analytical relationship between the damping constant cn

and the coefficient of normal restitution en may be derived24,33 by solving the equations of motion of
two colliding grains,

cn =
2 ln en

√
kn m

π2 + (ln en)2
, (A9)

where m = mi m j/(mi + m j) is the effective or reduced mass of the colliding grains. The above
allows us to tune the damper to obtain the desired restitution ep.

We non-dimensionalize all quantities of interest. The characteristic parameters employed for
non-dimensionalization of length and mass units are grain diameter d and mass m, respectively.
The characteristic mass m for spherical grains is calculated from the characteristic grain density
ρ, i.e., m = (π/6)d3ρ. Furthermore, the characteristic time involves particle diameter and the
acceleration due to gravity g, i.e., t =


d/g. All computational results presented here are made

dimensionless by employing these three characteristic parameters.
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